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Negative differential resistance in electronic conduction has been extensively studied, but it is not the case
for its thermal counterpart, namely, negative differential thermal resistance �NDTR�. We present a classical
Landauer formula in which the nonlinearity is incorporated by the self-consistent phonon theory in order to
study the heat flux across a chain consisting of two weakly coupled lattices. Two typical nonlinear models of
hard and soft on-site potentials are discussed, respectively. It is shown that the nonlinearity has strong impacts
on the occurring of NDTR. As a result, a transition from the absence to the presence of NDTR is observed. The
origin of NDTR consists in the competition between the temperature difference, which acts as an external field,
and the temperature-dependent thermal boundary conductance. Finally, the onset of the transition is clearly
illustrated for this model. Our analytical calculation agrees reasonably well with numerical simulations.

DOI: 10.1103/PhysRevB.80.104302 PACS number�s�: 05.70.Ln, 05.60.�k, 44.10.�i

I. INTRODUCTION

In the linear-response regime, transport processes such as
transport of mass, momentum, or energy can be described by
linear laws of the form

j = �F , �1�

where j and F stand for the generalized flux and force, re-
spectively, and � stands for the transport coefficient. In other
words, the flux j is a linearly increasing function of the ex-
ternal field F, which is a well-known characteristic of Fick’s
law for mass transport, Ohm’s law for electron transport, and
Fourier’s law for heat transport. As the field F becomes too
strong, the system may come into the nonlinear-response re-
gime, where the linear relation �1� is no longer valid since
the transport coefficient � becomes itself field dependent. As
a result, an interesting phenomenon, i.e., negative differential
resistance �NDR� may take place in a system in the strong-
field regime where the flux counterintuitively decreases as
the external field increases.

Since the pioneering observation in the tunnel diode by
Esaki,1 NDR has been extensively studied for the electronic
transport, which led to widespread practical applications in
modern electronics.2 It is still an active research topic to
date, particularly at the atomic scale.3,4 However, its coun-
terpart in the heat conduction problem, namely, the negative
differential thermal resistance �NDTR� has been much less
studied. NDTR effect has been noticed in the studies of
asymmetric heat conduction �see Fig. 1 in Refs. 5 and 6�,
where it has been shown to be critical to design a thermal
diode with an enormous rectification factor. It has also been
shown that NDTR is crucial for a correct functioning of lat-
tice models of thermal transistor7 and thermal logic gates.8 It
is already known that NDTR effect can be qualitatively ex-
plained in terms of the overlapping of the vibrational spectra
of the interfacial particles.7,8 On the other hand, it has been
recently shown that in the model presented in Ref. 7, the
NDTR effect will gradually disappear as the system size in-

creases or the properties of the interfacial coupling
change.9,10 For a clear understanding of the mechanism un-
derlying NDTR effect, it is thus imperative to comprehend
from a quantitative point of view the necessary conditions
for the occurring of NDTR effect.

As far as we know, a rigorous analytical approach to study
heat conduction in a nonintegrable lattice system at the
nonlinear-response regime has been so far unavailable. One
usually has to rely on numerical simulations. In the present
study, we will develop a phenomenological approach, in line
with that in Ref. 6, to study heat flux through an “interface”
between two weakly coupled anharmonic segments. We
study two typical models, which have hard and soft anhar-
monicity, respectively. The theoretical calculation based on
the presented Landauer-type formula yields results in reason-
able agreement with the numerical simulation. We will show
that the intrinsic nonlinearity of the system is necessary for
the occurring of NDTR. It is further illustrated that NDTR
does not always occur in the presence of nonlinearity. A
transition from the absence to the presence of NDTR with
the increase in the nonlinearity is illustrated for both models.
A simple but physically appealing mechanism is proposed in
order to explain the origin of NDTR in the nonlinear sys-
tems. Our study of NDTR provides indications of possible
applications such as the construction of thermal devices.

II. THEORETICAL APPROACH

We study in this work the stationary heat current across a
chain consisting of two weakly coupled lattices,

H = H+ +
Kint

2
�x1 − x0�2 + H−, �2�

where the Hamiltonian for the left and right segments are
given by
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0
pi

2

2
+

1

2
�xi+1 − xi�2 + U+�xi� �3�

and

H− = �
i=1

N/2
pi

2

2
+

1

2
�xi+1 − xi�2 + U−�xi� , �4�

respectively. U��x� represent the on-site potential that will
be specified below. Two heat baths with temperatures T+ and
T− are connected to the extremities of the left and right seg-
ment, respectively. Note that NDTR effect have been so far
investigated only in spatially asymmetric models.5–10 How-
ever, we will show in this study that NDTR can also take
place in a spatially symmetric model, i.e., for U+�x�=U−�x�.

In the case where the coupling Kint between the left and
right segments is weak, the two segments will achieve two
nearly equilibrium states at temperatures T+ and T−, respec-
tively. Their vibrational motion can thus be approximately
described according to the self-consistent phonon theory
�SCPT� �Refs. 6 and 11–13� with effective harmonic Hamil-
tonians H+

�0� and H−
�0� of the form

H+
�0� = �

i=−N/2+1

0
pi

2

2
+

1

2
�ui+1 − ui�2 +

f+

2
ui

2, �5�

H−
�0� = �

i=1

N/2
pi

2

2
+

1

2
�ui+1 − ui�2 +

f−

2
ui

2, �6�

with ui=xi− �xi�=xi−�. The effective force constants f� are
determined by numerically solving the self-consistent equa-
tions

f� = 2
��U��x���

�0�

��x2��
�0� . �7�

Here � . . . ��
�0� denotes the thermal average with respect to the

trial harmonic Hamiltonian H�
�0� at the corresponding tem-

perature T� and it is defined by

�A�u���
�0� =

�A�u�exp�− ��H�
�0��u��du

�exp�− ��H�
�0��u��du

, �8�

for a given measurable A�u�, where ��= �kBT��−1. Note that
according to Eq. �8�, f� is temperature dependent. The deri-
vation of Eq. �7� can be found in the appendix of Ref. 13.
The renormalized normal-mode frequencies of phonons in
each segment can then be written as ���q�
=	4 sin2�q /2�+ f�, where q stands for the wave vector.

According to the Khalatnikov theory,14 the heat flux can
be regarded as the propagation of plane waves �phonons�
with various frequencies. Within this approach, the heat flux
through the system composed of the segments, Eqs. �5� and
�6�, can be determined by15

j =
kB�T+ − T−�

2�



�min

�max

T���d� , �9�

where �min and �max correspond to the boundaries of the
overlap band of left and right phonon spectra, that is, �min
=max�	f+ ,	f−� and �max=min�	4+ f+ ,	4+ f−�. T��� is the
phonon transmission probability through the interface. It is
worth mentioning that Eq. �9� is similar in form to the cel-
ebrated Landauer formula

j =
1

2�

 T�����+��,T+� − �−��,T−��	�d� , �10�

where ��= �e��	�−1�−1 are the Bose-Einstein distribution
functions. The Landauer formula �10�, originated from the
study of electron transport,16 describes the ballistic transport
of phonons in quantum systems.17 Considering the high-
temperature limit �classical limit� where �����	��−1, Eq.
�10� reduces to Eq. �9�. Note that the quantum constant 	 is
cancelled automatically in the classical limit. Thus Eq. �9�
can be considered as the classical form of the traditional
Landauer formula.

To find the transmission coefficient, we consider a plane
wave incident from the left, which is partly reflected by the

interface with amplitude R̄ and partly transmits across the

interface with amplitude T̄ into the right segment.6 The dis-
placement of the ith particle from the equilibrium position
can be written as

ui =��eIki + R̄e−Iki�e−I�+t, if i 
 0

T̄eIq�i−1�−I�−t, if i � 1
� , �11�

where I is the imaginary unit. Thus the motion of the inter-
face particles can be described by the following equations

− �+
2u0 = u−1 + Kintu1 − �1 + Kint + f+�u0, �12a�

− �−
2u1 = u2 + Kintu0 − �1 + Kint + f−�u1. �12b�

If an acoustic matching condition �+=�−=� is satisfied,
the solution of Eq. �11� gives the transmission probability of
Eq. �9� in the form

FIG. 1. �Color online� Heat flux j as a function of T− for the
symmetric harmonic chain ��=0, fL0= fR0= f0�. Here Kint=0.05,
T+=1. The system size is N=64 for the simulation. The linear de-
pendence of j on T− implies that the transmission is temperature
independent.
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T��, f+�T+�, f−�T−�� = 1 − �R̄2� =
C2Kint

2

C1�1 − 2Kint� + C3Kint
2 ,

�13�

where

C1��� = ��2 − f+���2 − f−� , �14a�

C2��� = 	C1�4 + f+ − �2��4 + f− − �2� , �14b�

C3��� = �C1 + C2�/2 + 2�2 − f+ − f−. �14c�

Thermal transport is inhibited, i.e., T=0 if the phonon bands
of the two segments are mismatched.

In what follows, we will illustrate the results of the ana-
lytical calculation based on Eq. �9�. As a comparison, non-
equilibrium molecular-dynamics simulations are performed
by applying Langevin heat baths at the two extremities of the
chain. The heat flux, whose definition can be found in Ref.
18, is averaged over a long enough time so that the system
reaches the steady-state regime, at which the local heat flux
is constant along the chain. During the simulations, T+ was
fixed and the temperature difference T=T+−T− was
changed by changing T−.

A. �4 model

Let us first consider the �4 model, which is a typical
bounding potential of “hard” anharmonicity,

U��x� =
f0

2
x2 +

�

4
x4. �15�

The effective force constants f� are determined by numeri-
cally solving the self-consistent equations

f� = f0 +
3�kBT�

	f�
2 + 4f�

. �16�

Note that f� regularly increases with increasing temperature.
Before discussing the nonlinearity effect, we will apply

the above analytical analysis to the harmonic model �=0. In
this case, the transmission, Eq. �13�, is temperature indepen-
dent since f�= f0. Figure 1 illustrates the heat flux j as a
function of T− for the harmonic chain for several values of
the harmonic constant f0. By inspecting the figure, we first
notice that in the ballistic case, the simulation agrees well
with the analytical result that follows from the classical Lan-

dauer formula �9� �kB=1�. Furthermore, it is seen that j in-
creases linearly when T− decreases, that is, when the tem-
perature difference increases. As is expected, NDTR cannot
be observed in the harmonic model since there does not exist
any nonlinear-response mechanism.

Furthermore, Fig. 2 shows that if the nonlinearity is
present inside each segment ���0�, the formula �9� still
works reasonably well. By comparing the left and right plots
of Fig. 2, it is seen that a transition from the absence to the
presence of NDTR occurs as the nonlinearity � increases. We
also present in Fig. 3 the evolution of the turning point T� at
which NDTR effect manifests itself as a function of the non-
linearity. The onset of NDTR at �c�1 is clearly shown.

Note that Eqs. �9� and �16� implies the following scaling
relation

j�T�,�� = sj�T�/s,s�� , �17�

where s is an arbitrary scaling constant. The same scaling
property can be obtained from the equations of motion of the
model, Eq. �2� �see Ref. 19�. Equation �17� indicates the
equivalence between the temperature and the nonlinearity.
Thus a similar transition for fixed � can be observed as T+
increases, which will be verified both from numerical simu-
lations and our analytical approach. In fact, NDTR takes
place if ���c �or T+�Tc�.

B. On-site Morse model

Now we consider a model which consists of two weakly
coupled symmetric nonlinear lattices with an on-site Morse
potential given by

U��x� = D�exp�− �x� − 1�2. �18�

Model, Eq. �18�, was introduced in order to investigate the
DNA denaturation process.20 The anharmonicity of the
model is “soft” since the Morse potential is bounded for x
→�.

The effective force constants f� are obtained by numeri-
cally solving the following self-consistent equations

(b)(a)

FIG. 2. �Color online� Heat flux j as a function of T− for the �4

model. Left: �=0.8; Right: �=5. In both cases, Kint=0.05, T+=1
and N=64 for the numerical simulation.

FIG. 3. �4 model: the turning point T�, at which the heat current
exhibits a maximum, as a function of �. Nonzero T� indicates the
presence of NDTR. The transition from the absence to the presence
of NDTR occurs at �c�1.
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f� = 2�2D exp�−
�2kBT�

	f�
2 + 4f�

� . �19�

It should be noted that f� decrease as the temperature in-
creases for a soft anharmonic potential such as Eq. �18�, as
shown in Fig. 4. This is different from that of a model with a
hard anharmonicity such as Eq. �15�, for which f� monotoni-
cally increases as the temperature increases. One can see
from Fig. 4 that there exists a critical temperature Tc above
which the force constant f vanishes. It means that the on-site
potential can be neglected once the thermal energy of the
particles overcomes the potential energy and then the system
behaves like a harmonic chain. The inset of Fig. 4 shows that
the critical temperature increases with the nonlinearity of the
system, which reflects the fact that the deeper the potential
well is, the larger is the thermal energy needed to overcome
the potential barrier.

We then use Eq. �9� to compute the heat flux and compare
the analytical result with numerical simulations, as shown in
Fig. 5. One can see that since the nonlinearity D is weak, the
heat flux increases monotonically with increasing T. Nev-
ertheless, NDTR occurs as D becomes large enough. Like �4

model, Fig. 5 indicates that as the nonlinearity increases, the
soft potential model also exhibits a transition from positive
differential thermal resistance �PDTR� to NDTR.

A simple scaling relation such as Eq. �17� for the nonlin-
earity and the temperature is inexistent for the Morse model.
However, increasing the nonlinearity is qualitatively equiva-
lent to increasing the temperature. Thus a similar transition
from PDTR to NDTR as the temperature increases can be
expected. In Fig. 6, we calculate the scaled turning point

���T� /T+ at which the heat flux exhibits a maximum. Non-
zero �� indicates the presence of NDTR. The analytical result
shows the onset of NDTR at T+�11 for the dissociation
threshold fixed at D=15.

However, one should note that the SCPT fails in the vi-
cinity of the melting transition for the present soft potential
model, as pointed out in Ref. 12. The reason for the failure of
the variational approach is the fact that the half-bounded po-
tential, Eq. �18�, cannot be simply approximated by the trial
harmonic potential with a temperature-dependent force con-
stant. This peculiarity prevents us from modeling the crucial
role of the nonlinearity in this regime using the SCPT. This
point will be discussed in detail in the next section. Although
it is clear that the quantitative agreement with the simulation
result is poor, we emphasize that the present approach goes
far beyond the traditional Landauer approach in its ability to
characterize the nonlinear-response regime, for which a tran-
sition from PDTR to NDTR is illustrated at least in a quali-
tative manner.

III. PHYSICAL MECHANISM

The results presented so far give rise to the following
question: what is the origin of NDTR in the above models?
We will show that the classical Landauer Eq. �9� yields a
simple and intuitive explanation. One should note that the
temperature discontinuity at the virtual interface �the site x0�
indicates the existence of the thermal boundary resistance �or
conductance, see Ref. 21�, and it plays a crucial role for the
heat conduction in our weakly coupled model. Defining the
effective thermal boundary conductance by

� =
kB

2�



�min

�max

T���d� , �20�

Eq. �9� can be rewritten as

j = T� , �21�

which is similar in form to Ohm’s law for electrical conduc-
tion. The simple relation �21� suggests that there exists
mainly two contributions to the temperature dependence of
the heat current for a two-segment system. The first contri-
bution comes from the temperature difference T, which acts

FIG. 4. �Color online� Effective force constant f as a function of
the temperature for the model, Eq. �18�. Inset: the critical tempera-
ture Tc, above which f vanishes, against the nonlinearity D.

(b)(a)

FIG. 5. �Color online� Heat flux j as a function of T− for the
Morse model. Left: D=5�10−5; Right: D=15. In both cases, �
=0.426, Kint=0.05, T+=20, and N=64 for the numerical simulation.

FIG. 6. Morse model: the scaled turning temperature T� /T+, at
which the heat current exhibits a maximum, as a function of T+.
Here D=15 and �=0.426.
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as an external thermal force and yields the regularly increas-
ing behavior of j with decreasing T−. The second contribu-
tion is due to the thermal boundary conductance �. One can
see from Fig. 7 that unlike T, � is an increasing function of
T−. The widening of the overlap band of the vibrational spec-
trum of segments L and R, or �=�max−�min, is mainly
responsible for this increasing behavior of the thermal con-
ductance. Consequently, the origin of NDTR effect is basi-
cally the competition between the growing “external field”
T and the diminishing overlap band � as T− decreases.
NDTR thus occurs below the temperature T� at which the
opposite behavior of both contributions exactly compensate
each other and it takes place if and only if � becomes domi-
nant for T−�T+. Figure 7 shows the apparition of NDTR
effect as one considers different nonlinearity parameters �
=1, 4, and 9 for the �4 model. One can note that for seg-
ments with � large enough, j vanishes as T− decreases due to
the mismatch of the phonon bands. We also plot in Fig. 8 the
thermal boundary conductance � and the corresponding heat
flux j for the Morse model, which displays a similar behav-
ior. We can thus conclude that the proposed mechanism for
the occurring of NDTR is valid for both hard and soft mod-
els. For the harmonic system, � is exactly temperature inde-
pendent, leading to the linear behavior observed in Fig. 1.

One should note that the curve 2 of Fig. 8 exhibits a jump
at T−=Tc. For T−�Tc, the effective force constant f vanishes
and the phonon frequency becomes temperature independent.
The system thus behaves like a harmonic chain, character-
ized by a temperature-independent thermal boundary con-
ductance � and a linear behavior of the heat flux. The occur-
rence of the jump and the exact linear behavior of the heat
flux as T−�Tc is inconsistent with the numerical simulation.
As discussed in the last section, this artificial result lies in the
incapability of the SCPT to model the transition at the vicin-
ity of Tc as shown in Fig. 4. Since Tc increases with D, the
artificial jump disappears provided T+�Tc�D�, which is il-
lustrated in the right plot of Fig. 5.

IV. SUMMARY

In summary, we presented a classical Landauer formula to
study NDTR effect in typical lattice models. It was shown

that NDTR cannot occur in a harmonic lattice, for which the
linear relation �1� is generally valid no matter how large the
temperature difference is. In the presence of anharmonicity,
one can observe a transition from the absence to the presence
of NDTR as the nonlinearity is increased for both hard and
soft potentials. The NDTR effect is basically due to the com-
petition between the increasing behavior of the external field
and the decreasing behavior of the effective thermal bound-
ary conductance of the chain. The transition in Figs. 3 and 6
indicates that NDTR may be controlled by adjusting the pa-
rameters of the system or the temperature of heat baths,
whose utility for nanoscale applications is clear.

It is imperative to clarify why we are allowed to apply
such a seemingly ballistic transport formula �9� to calculate
the heat flux through a nonlinear system in the strong field
regime. For the particular model presented, even though the
whole system is at strong external field, each segment is still
close to its corresponding equilibrium state thanks to the
weak coupling, and can thus be approximately described by
SCPT. It should be stressed that the analytical estimation,
which is based on the local thermal equilibrium of the seg-
ments, holds only if the coupling Kint is weak enough. For
strong coupling, both segments get far from thermal equilib-
rium and SCPT cannot be applied anymore to deal with the
nonlinearity.

Finally, it is worth giving a comment about the relation
between asymmetric heat conduction and NDTR. Note the
following two facts: �1� asymmetric heat conduction results
from the intrinsic spatial asymmetry of the model, which is
not necessary for the occurring of NDTR as shown in this
study; �2� one can observe asymmetric heat conduction with-
out the occurring of NDTR as long as the applied tempera-
ture difference is moderate. It seems that the NDTR, as a
field-induced effect, is neither a sufficient nor a necessary
condition for thermal rectification.
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(b)(a)

FIG. 8. �Color online� Morse model: the thermal boundary con-
ductance � �left� and the heat flux j �right� as a function of T− for
different values of D. Lines 1, 2, and 3 correspond to D=0.001, 5,
and 18, respectively. Here T+=20 and Kint=0.05.

(b)(a)

FIG. 7. �Color online� �4 model: the thermal boundary conduc-
tance � �left plot� and the heat flux j �right plot� against T− for
different values of �. Lines 1, 2, and 3 correspond to �=1, 4, and 9,
respectively. One can see that nonlinearity � has an important effect
on the behavior of the heat flux due to the interchange of the domi-
nant role in Eq. �21�. Here T+=1 and Kint=0.05.
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